P: Problems

P: Programming

P: Programming Language
P: Programming Contest

Problems

The motivation of human
creativity.

* Mother of every new idea.
* Human asks problems.

* And human finds solutions.

The history of human
civilization is the history of
problems.

How will society handle the massive wave of
unemployment as Al and automation take over human
jobs?

How does the brain create thoughts and feelings? Is
brain and mind different?

What is the secret behind the pattern of prime
numbers, and can we ever fully understand it?

How can a democracy stay strong when people are
divided and trust is fading?

How can we reduce the gap between the rich and the
poor without slowing progress?

Can we color any map using no more than four colors
so that no two neighboring regions have the same

color?

2136279841 — 1 s a prime number?

1+2+3+...+100

*~J

A mathematician’s solution

Using the Gauss’s relations,

n(n+1)

S =
2
Here n = 100, therefore,

S = 1002.101 - 5050

A C Scientist’s approach

S=0

foriin range(101):
S=S+i

print(S)

Mathematical approach

For quadratic (ax? + bx + ¢ = 0), we have

. the quadratic formula:
Find the roots of N~

x2—5x+6=0. 2a

Set the values for a, b, c and calculate.
Here,a=1,b=-5,c=6
X=2,3

1 import math
2
3 # Coefficients
4 a=1
5 b =-5
¥ cC =6
.
8 # Calculate the discriminant
9 discriminant = b®*2 - 4%a*c
Computational Approach | 10
11 # Check if the discriminant is non-negative
12 if discriminant >= @:
Just Use the quadratic formula and 13 # Two real roots
. 14 rootl = (-b + math.sgrt(discriminant)) / (2 * a)
COde It' EaSY'peaSY! 15 root2 = (-b - math.sgrt(discriminant)) / (2 * a)
16
17 print(f"The solutions are: x1 = {rootl} and x2 = {root2}")
18 else:
19 # Complex roots
20 realPart = -b / (2 * a)
21 imaginaryPart = math.sqrt(-discriminant) / (2 * a)
22
23 print(f"x1 = {realPart} + {imaginaryPart}i")
24 print(f"x2 = {realPart} - {imaginaryPart}i")

Computational Approach Il

Use Newton-Raphson method
The Newton-Raphson method for solving an
equation f(x)=0is given by the iterative/loop
update formula:

f(xn)

xn+1 = xn _ff(x)
n

Steps:

1.Define the function f(x) and its derivative
f'(x).

2.Choose an initial guess for x,, .

3.Use the Newton-Raphson update rule to
iteratively refine the guess for the root.

For our problem, set
f(x)=x?>—-5x+6and f'(x,) =2x — 5

L T T N o T O o B T S

=
&=

11
12
13
14
15
16
17
18
19

21
22
23
24
25
26
27
28

Define the quadratic function and its derivative
def f(x, a, b, ¢):
return a*x**2 + b*x + ¢

def f prime(x, a, b):
return 2¥a*x + b

Newton-Raphson method to find roots of the quadratic equation
def newton raphson(a, b, ¢, initial guess, max iterations=100, tolerance=1e-7):
Xx_n = initial guess
for _ in range(max iterations):
fx n=Ff(xn, a, b, c)
f prime x n = f prime(x_n, a, b)

if f prime x n == ©: # Avoid division by zero
print("Derivative is zero. Newton-Raphson method fails.™)
return None

Xxnl=xn-fxn/f prime x n

If the solution is within tolerance, stop

if abs(x_nl1 - x_n) < tolerance:
return x_nl

X n=xnl

print("Maximum iterations reached. No convergence.")
return None

Iteration

7

4.777777777777778

3.693766937669377

3.2015940250208406

3.028962725931777

3.000792909833034

3.0000006277105675

3.0000000000003952

f(x_n)
20
4.938271604938269
1.1750795014725224
0.24223417594494556
0.02980156542517598
0.0007935385390371863
6.277109605434816e-07

3.9612757518625585e-
13

f(x_n)
9
4.555555555555555
2.387533875338754
1.4031880500416811
1.0579254518635537
1.0015858196660679

1.000001255421135

1.0000000000007205

X _n+1l
4.777777777777778
3.693766937669377
3.2015940250208406
3.028962725931777
3.000792909833034
3.0000006277105675

3.0000000000003952

2.999999999999999

Computational Duality

* "Mathematical-Computational

Symbiosis" - Mutual benefit. o . .
Computer has limited/NO capacity to prove mathematical

theorem. But it can help mathematical framework

* "Formalism-Algorithm Duality" - .
through faster computation.

Bridge between mathematical
formalism and computational

implementation. Mathematics has many computational frameworks but is

NOT time efficient.

* "Theoretical-Practical Confluence" -
Showing their merging influences.

Paul Erdés
Hungarian Nomad Mathematician

* Spentone year (1953-54) in the mathematics
department at the University of Notre Dame in South
Bend, Indiana

* Known for around 4000 mathematical papers.

e Bestknown for The Prime Number Theorem.

L)
xoo X

In(x)

1

Offered $500 for Collatz conjecture! Still an open
problem. Try!!

The 3n + 1 problem vs
Collatz Conjecture

3n + 1 problem: A computational problem

You will given a positive integer n.

* If nis even, repeat the process

* Ifnisodd, find 3n + 1 and repeat the
process

* Ifnis1,stop

Collatz Conjecture: A mathematical quest

This process will eventually reach the number
1, regardless of which positive integer is
chosen initially.

CSES Problem Set

Weird Algorithm

TASK | STATISTICS

Time limit: 1.00 5 Memory limit: 512 MB

Consider an algorithm that takes as input a positive integer n. If n is even, the
algorithm divides it by two, and if n is odd, the algorithm multiplies it by three
and adds one. The algorithm repeats this, until n is one. For example, the
sequence for n = 3 is as follows:

3-10—-5—-16—-8—-4—-2—1

Your task is to simulate the execution of the algorithm for a given value of n.
Input
The only input line contains an integer n.
Output
Print a line that contains all values of n during the algorithm.
Constraints

o 1<n<10°
Example

Input:
3

Qutput:
310516 84 2 1

8-Queen Problem

Most famous variant:

You are given an 8x8 chess board. You have to
place eight queens on it so that no two queens
are attacking each other. Find the number of
valid configuration.

Variant 2:

You are given a configuration. Now you have to
verify if it is a valid one.

Gauss first solved this problem using
backtracking.

Beyond 8 Queen problem: N-
Queen problem

Now, you are given an integer for N. You
have to find the number of valid
configuration.

* Can we find the number of valid
configurations for any arbitrary n?

* |t's a pure computational problem. So far
we computed up to N = 27. But it

requires parallel computing.

* Algorithm is NOT always enough.

LT=R = T - B T - B N I B |

M A A M N A =S & = = = =% =% = =
R W N = D080 & e W N =D

26

fundamental
1
0
0
1
2
1
6

12

46

92

ELY

1,787

9,233
45,752
285,063
1,846,955
11,977,939
83,263,591
621,012,754
4,878,666,808

39,333,324,973
336,376,244,042
3.029.242,658,210
28,439,272,956,934
275,986,663,743,434
2,789,712,466,510,289

92

352

724

2,680
14,200
73,712
365,596
2279184
14,772,512
95,815,104
666,090,624
4,968,057 ,848

39,029,1858,854
314,666,222 712
2,691,008,701.,644
24,233,937 684,440
227.514,171,973,736
2,207,893,435,808,352
22,317,699,616,364,044

27 | 29,363,495,934,315,694 | 234 907,967 ,154,122 528

Two problems from graph search

1. Minimum number of hop of a city from Frankfurt.

2. What is the minimum distance of a city from

This requires a BFS. Need to restructure the graph.
DON'T need all those distance values.

Frankfurt?

This is almost BFS, but modified BFS.
The algorithm is called Dijkstra.
Need all the distances values.

———

Qra kl,ll't :,'_
35 km — T

o~ Tl 173 km
T 217 km \
e -
Mlanniseim ;1
I'q"“h-—_.r_ e — -"‘fE utt-];t“> "lI
|

wurzl:-urq

BO tui —— I,I (:" ikl \J
: Uit

1-EIL'-HIT|II' 103 km |I]g:!_|.:m T

fﬁ‘;"i’“fﬁcg,],‘u,, Qe S

250 km -fﬁﬁl.'-' km
167 km
.ﬂ.ugibmgﬁh‘

-\-_\—
B4 Em
- .
hen

C_ BAbnC

’f,,:f“
fﬁ:'l-;n;;:r:j I'ﬂ-'l."l.l'-.Jr1rl:+u -ra:l \7&559[}

-
-
/. L
— ,_
Gﬂarlqruh;_) @urnhprg .\f:fu_;) @inch 9

11
(:.I!:nghll;a-) @Trgarr

Another Graph search problem
Finding out the number of
rooms.

You are given a map of floor. There are
walls. A room is a place where you can
freely move. Now find out the number of
rooms.

e Use DFS.

* A fancy name for this problem is flood-
fill. You use it a lot in painting.

CSES Problem Set
Counting Rooms

TASK | STATISTICS

Time limit: 1.00 5 Memory limit: 512 MB

You are given a map of a building, and your task is to count the number of its
rooms. The size of the map is n x m squares, and each square is either floor or

wall. You can walk left, right, up, and down through the floor squares.
Input

The first input line has two integers n and m: the height and width of the map.

Then there are n lines of m characters describing the map. Each character is
either . (floor) or # (wall).

Output
Print one integer: the number of rooms.
Constraints
« 1<n,m <1000
Example
Input:
]
AR
#..8.. .8
L8

#..8...#
AR

Output:
3

The Four Color Problem

(Not a problem anymore)
It's solved!

Theorem: Any map drawn on a plane can be
colored with at most four colors in such a
way that no two adjacent regions share the
same color.

A purely mathematical problem.
But not solved purely by human. Needed

computational help. The first proof of
human-computer collaboration.

The TSP: A really Hard Problem

A salesman needs to visit n cities, starting
from a given city (a) , visiting each city
exactly once, and returning to the starting
city.

The goal is to find the shortest possible
route that minimizes the total travel
distance (or cost).

Solution Approaches
Algorithms (for small n):
1. Brute Force: Check all (n-1)!
possible routes (exponential time).
2. Dynamic Programming (Held-Karp

Algorithm): Solves in O(n2 2") time.

Travelling Salesman Problem

Problems in Primes

1. Generate all the primes within 100, 1000,
10000...

2. What is the largest prime. (solved!)
3. What is the largest prime so far...

4. How to verify a number is a prime or not?

We can generate primes by Sieve of Eratosthenes. Its
simple yet beautiful!

There is no largest prime! We have a proof of that. One of
the earliest and fanciest proof. You know that?

The largest prime so far:
2136,279,841 — 1

Found in October 12, 2024 by GIMPS(Great Internet
Mersenne Prime Search). The man is Luke Durant.

Primality Testing
How do you test a number n is prime or not?

Easy Solution:
Just divide all the number from 2 to n-1. If found

any number then n is composite, otherwise prime.

But this is slow.

Summary of Complexity Comparison

Algorithm Type Time Complexity Practical Use?

Trial Division Deterministic O(y/n) No (too slow)

Optimized Trial Division Deterministic O(/n) No (still slow)

Fermat Test Probabilistic O(klog’ n) No (not reliable)

Miller-Rabin Test Probabilistic O(klog’ n) Yes (widely used)

AKS Algorithm Deterministic O(log’ n) No (too slow)

ECPP Deterministic Qlflc-g4 n) Yes (best for very large primes)

Programming Language

The real way to use a computer

For programming competition:

Choose any programming language that has
three qualities:

1. Easyto use
2. Fast Compilation

3. Big Community

What is language?!
* Natural Language
* Formal Language

There is language, that's why there are problems!
We live in a language mediated reality.

Make your language better!

The three Programming
Languages

* The Clanguages : Interface to the machine
* The Python : The interface to the Al/ML

* The JavaScript : The interface to the web

python’

ClC

JS

Lisp: The other kind of
Programming Language

* Declarative
* Focuses what to compute NOT how to compute

* Functional
* Prefers functions, therefore recursion rather than
looping.

e Usesin Al research

* Immutability
* Memory friendly

CP: Competitive Programming

Most likely it will NOT give you:
Why Programming Contest? There are two

reasons: * The best job

1. To ensure competitiveness * A Nobel Prize

2. To foster problem solving capacity, therefore * A ministry
creativity

But it will make you:
* Smarter

* Visionary

What is my suggestion?
Why do | do programming? * Thoughtful

How to CP

The three books:

1. Competitive Programming 3: Steve
n Halim

2. Programming Challenges

3. Competitive Programmer's Handbo
ok

Easy problems topics:

What is an easy problem? The problem you
can solve immediately. Do:

Searching: Linear, Binary

Sorting: Quick Sort, Merge sort, Bubble Sort
Basic Math: Number theoretic Problem
Geometry: Easy Geometry

Start learning a programming language. Start with
python. Learn everything up to function. Don’t hurry!
Understand every bit! But only learning is NOT
enough. Need Practice.

Buy three books.

Start solving programming. Take easy problems first.
Spend one/two months with easy problems. Don’t
stay there for long or forever!

Now start reading data structures. Start with linked
list, queue, priority queue and stack. Try to solve
problems that requires these data structures.

But you will find eventually that you need to learn
graphs. All these data structures are almost useless
alone but powerful with graphs.

But before going to the graph, practice some
problems with backtracking. It will give the power of
recursion. In this stage you may want to explore
dynamic programming or DP. But please don't.

https://www.amazon.com/Competitive-Programming-3rd-Steven-Halim/dp/B00FG8MNN8
https://www.amazon.com/Competitive-Programming-3rd-Steven-Halim/dp/B00FG8MNN8
https://i.cs.hku.hk/~provinci/files/b2-programming_challenges.pdf
https://cses.fi/book.pdf
https://cses.fi/book.pdf

Graph Before DP:

* Start with Search algorithms. Whatever
First Search. Shortest Paths. Circuits.

* Tree: Binary Tree, Heap, BST 7. Start exploring graph.

* MST, Top Sort 8. Now Start exploring DP. Don’t touch DP before you

* Graph Coloring Problems understand the DAGs

Graph After DP: 9. Go deep in graph and DP. Start solving hard problems.
* Articulation Point 10. Explore some geometric problems, game theory and

other spinoffs.
* Connectivity

* Flow: Max flow, min cuts and variants.

Where to practice: The online

judges

A lot of problems

And an automated judging system

[HightOJ

UVa

Hunting

. Start with cses.fi
. When you are done with introductory problems of

cses then start codeforces division 3 and 2. After each
contest analyze the solution. Codeforces is a key
player in PC and will be a key player on WW3

Don’t forget about Uva from the very beginning of
your CP journey.

BTW, tocoder is another platform. They are American!

-~

CODEFORCES TODCOder

Community * Practice in a group.

7 Toph

* Create discussion group.

Create reading group.

HackerRank . ClUB

* Create your own online community.

Onsite Contest

s B -
Create your own team. --. NHGFFFCHE
@ (/) ngmmmingta%tesl

—

* Target for NCPC 2026. 50

International Collegiate
° Win |CPC Wlthln 2030 acm Programming Contest

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

